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q • ABSTRACT

The radiation from an infinite phased planar array of rectangular pistons

(all with the same velocity magnitude) in a nonrigid baffle is evaluated.

The nonrigid interstices between the array elements are approximated by

equivalent undriven pistons with some internal impedance. When the dimen-

sions of the pistons are small compared to a wavelength, simple approxima-

tions are obtained for the radiation impedance of an array element and the

loss in source level due to the effect of the interstices. The source level
:1 2is multiplied by the factor 1/ 1 + (~A/Z1 cos ~) , where ~A is the fraction

of the array area occupied by interstices, 0 is the angle between the normal

to the array and the direction to which Lne array is phased , and Z1 is the

interstitial impedance per unit area divided by pc, p = density of water, c =

velocity of sou nd in water.
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I. INTRODUCTION

When radiation fro a sonar arrays is considered~ usually one prescribes the

velocity distribution of the array elements, and one assumes that the baffle,

if there is one, is rigid. With such assumptions the mathematical problem is

frequently sinpler than with some other possible assumptions . However, the

inLerstitiat areas between the array elements often are not rigid; in some

arrays there is no baffle at all, in other arrays the baffle material nay

not be rigid enough. Nonrigid surfaces may have a profound effect upon the

propagation of sound .1 6  Consequently, a study of the effects of nonrigid

interstices is of considerable importance in the design of sonar arrays.

We would like to obtain for the effects  of interstices a mathemattcal

solution which is simple and yet accurate. The mathe!~atical modeling of

finite arrays on f init e  baff les  is complicated even if the baff les  are rigid .

However , the radiation of Sound from an infinite phased array on a rigid plane

baffle can be described by relatively simple approximate expressions under
0 

certain conditions, and the nearfield sound pressure has been shown to be

Ii roughly the same for infinite and large finite arrays for angles not too

r near to endf ire.7’ 8~ Consequently, we have evaluated the effects  of non-

rigid interstices Ln infinite arrays; such effects are expected to approxi-
0 0 

mate the effects  in large f ini te  arrays .

The nonrigidity of the interstitial baf f le  areas can be modeled in

various ways; the simplest mathe matical condition is to set the pressure

on the interstice equal to the velocity of the interstitial baffle surface

0 
times an interstitial impedance per unit area. Such a condition implies

that the nonrigid interstitial surface reacts only to the local pressure,

and the movement of the surface is not affected by the acoustic field else-

where. For example, if the interstitial volume between the sonar array

- I 
- elements is filled with water, such cavities may have a wide range of
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impedances, depending on the geometry of the cavities; in general the cavi-

ties may be coupled to each other , and therefore the movement of the inter-

stitia1~ surface may depend not only on the local pressure, but also on the

pressure at the other cavities. We will assume that such coupling of cavi-

ties is weak enough so that at the interstices we can use the local boundary

condition: pressure equals velocity times an impedance per unit area. 0

Furthermore, if we break up the interstitial area into smaller areas with

dimensions much less than a wavelength, then each smaller area will move

with roughly the same velocity, and therefore can be regarded as a piston;

i.e., the interstitial area between the active -radiating pistons can be

broken up into small equivalent passive undriven pistons with some internal

impedance. The radiating pistons have a prescribed velocity distribution

which is obtained by applying the appropriate voltages to the transducer

elements. The equivalent interstitial pistons are vibrated by the acoustic

field only; their velocity distribution depends on the mutual coupling

between the interstitial and radiating pistons, and on the interstitial

impedance. A similar approach has been used to model a nonrigid baffle

surrounding a small array (not the interstitial baffle between the elements).9’1°

Thus we will consider an infinite array of rectangular pistons with

the interstices approximated by another set of rectangular pistons as shown

in Figure 1. The radiating pistons are unshaded in Figure 1, and the inter-

stitial pistons are shown shaded .

All interstitial pistons have the same internal impedance per unit area.

To be specific , we are showing two interstitial pistons for each radiating

piston in Figure 1; however, if desired, the interstitial area could be

divided further into still smaller equivalent pistons.

In the next sections we will solve for the velocities of the interstitial

pistons when the velocities of the radiating pistons are specified , and we

[1 -2-
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will obtain the nearfield and farfield pressure and the radiation impedance

[1 of an element. Simple approximate expressions for the radiation impedance

0 and the loss in source level will be obtained for the case when the dimen-

sions of the radiating and interstitial pistons are much less than a wave-

length. Numerical results will be presented for the approximate loss in

source level:.

II. EXACT EQUATIONS

Let the infinite array and the nonrigid baffle occupy the plane z0

(see Fig. 1). The centers of the radiating pistons are located at xnd~,

Ym d y, n9~, ± 1, ± 2, ... , m 0, ± 1, ± 2 The velocity (in the z

direction) of the radiating piston in the m~~ row and the n
th column is

0 forced to be

v~~ v~ e 
lwt + iYmn (1)

where yR is a complex constant, w the radian frequency, t the time , and

~
‘mn _mkd~ sine sinf - nkd~ sin8 cosf, (2)

where k9u/c, c the velocity of sound in water, and 9, 4 are angles in
spherical coordinates which determine ~he direction to which the farfield

U pressure maximum is steered .
U -

Let the velocity of the horizontally oriented interstitial piston

0 - - above the m.~Jl, ~~~~ radiating piston in Fig. 1 (with center at xnd x,

y(m + ~)d~) be denoted by

= vEe ifl)t+iymn , (3)

and let the velocity of the vertically oriented interstitial piston to the

right of the m.~h, nail radiating piston in Fig. I (with center at x (n+¾)d~,

I 

0 

y’mdy) be denoted by 
-

0 v~~~~
iWt+i.yjufl . - (4)

For simplicity we will refer to pistons with velocities v~~, vMn, or v~i(n as

0 
-

- 
L - -—_~~~~~~~~ 0~ •~• 0  __________

- —-
~~~~~~~~~~~~~~~~~



R-type, H-type, or V-type pistons.

• While is known, v
11 

and v~, are not, and they have to be obtained
from two equations for a force balance as shown in Appendix A. The

solution of the two simultaneous equations gives

0 

V
H 

= - 

SRE(SW + z1)~ - S~~S~~ (5)
v (S + Z)(5 + Z) - S S

- R liii I VV I HV VH

= 
5RV~

sHH + Zi) - SRESNV (6)
(S~~ + Z1) (Svv + Zi) - 5uv5vn

vhetepcZ
1 is the internal impedance per unit area of both types (hori-

zontal or vertical) of the equivalent interstitial pistons and Z
1 
is

I 
dimensionless; p is the density of water; and for J=R, H, or V, and K R ,

jj H, or V, the dimensionless quantities S are given by

[1 S 
iA
3 ~~ 

___ 

D(A
3). D(A.~)e~~(’T~~

) 
(7)

~~ A m - ~~ n - ~~ T(n, m)

0 

where A3 
is the are~ nf the piston of type J(R, H, or V ) ,  A

c 
= d d ~ = AR +

+ A,1, D(A
3) and D(A~) are related to the directivity of a rectangular

piston of type J and K,

D(A sth ~~g(m)ka~J sLn [½h (n)ka~j (8)
~ag(m)ka~ ¾h(n)ka~

~ 

~

, 1_~ • 
. 

-
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where a~ and a~ 

are the dimensions of the J piston in the x and y

direction,

- 
. h(n) .. sin8 co~~ + ZTTn/kd (9 )

• g(m) sin9 sink + 2rrrn/kd
7 (10)

w(n,m) = ~[h(fl)J
2 + ~~g(m)J 23 

¾ 
(II)

T = ~ 
j { i - ~ w(n m)~ 2} ¾, if 0 ~ ~(n,m) < 1;(n,rn) 

l.~tw(n,m) 3 2 - i} ¾, i~ w(n,m) > I.
- 

0 •~~~ 

- 
(12)

E(R ,R) E(H H) = E(V,V) = 0

-

. 

- (l3a)

-E(R,V) = E(V ,R-)- =. ½h(n)kd
~ (13b)

0 
-E(R,H) E(H ,R) = ¾g(m)kd~ (13c)

-E(H,V) = E(V,H) ¾h(n)kd
~ 

- ¾~(m)kd~
(13d)

For example, if we write out explicitly the equations for J = R,

K = V, we obtain from Eq.(7),~ 
-

- - -i¾h(n)kdx

- I 
- = ~~~~~ ~~ ~ f e . sin [¾g(m)ks~]

dxdy m - n - T(n ,m) ¾ g(m)ks~
- : 

- (14)

- •sin [ ¾h(*s~
] sin [½g(m)kd~] sin t½h(n)kt

~]

¾h(n)ks 4g(m)kd ~ih(n)kt

• 0

~~~~~~~~~~ ~~~~~~~~~~~~~~
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As shown in Appendix A, the total pressure Pcv
R
e PT can be

evaluated as

P
R~

+ (v
fl
/v
R

)P
H 

+ (v
V

/V
R

)P
V (15)

where 
~T’ ~R’ ~H’ 

and are dimensionless quantities, and for 3 = R,

H, orV

00 00 -ih(n)kx - ig(m)ky - T(n,m)kz + iE(J,R)
iA3 _________________________________________

A
c 

m - ~~ n - ~~ T(n,m)

(16)

where D(A ) is given by Eq.(8), and E(J,R) is given by Eq.(13).

The radiation impedance of a radiating piston is pcs s Z , where
x y  R

the dimensionless quantity Z
R 
is derived in Appendix A,

Z = S + (v
H
/v
R
)SHR + (vV/vR)SVR, (17)

and S
RR~ 

5
HR’ 

and SVR are given by Eq.(7).

III. APPROXIMATIONS

While the exact equation for the pressure field contains an

infinite number of terms as in Eq.(16), it has been shown that for

small pistons close together a single term (the m O , n 0  term) is

0 sufficient to approximate the exact equation. Thus, if the array

spacings d~ and d are much smaller than a wavelength, then, as shown

in Appendix B, we obtain the following approximate expression for

-6--
~ij j
J — - -~ — —



the total radiated pressure

0 
• P ~ G. A~ ~ezp (-ikxsin8cos~ - ikysin9sin~T A

c
cOs

~ (18)
— 

• -ikzcos9) = G.P ,

and the radiation impedance of an element becomes

- z ~ 
AR . G = Zr C, (19)

O R A cosO
C 0

where 
~r 

and Z
r are the approximate pressure and impedance which

• one would have obtained for small pistons close together if the

intersticcs had been rigid.7 Consequently, C is the factor which

gives the effect of the nonrigid interstices,

Z cos$ 1 - Z àos9/~AI = _ _ _ _ _ _ _  I
8A + Z

1
cosO I + (~A/Z1cos8) 1 + (Z~cos8 /~A)

(20)

I where ~A is the fraction of the array area occupied by the inter-

• 0 stices,

t

~

A - (A + A )  / A (21)

Note that C approaches 1 as it should when either AA 0 or 1z1 J ~~
.

For AA I C is finite, but P and Z vanish because A 0. G 0
r r R

if Z
1 

0, i.e., the array does not radiate if the interstices are per-

fect pressure release surfaces (at least in this approximation the pressure

vanishes; there may be some of the smaller terms in the exact equation

-7-
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which do not vanish). Observe that G depends only on the combination

Z
1
coaø/&A, not on Z

1
, 6, or ~A separately. Z and AA are dimension-

less, therefore Z
1
cos9/~A is also dimensionless. 

-

When 8 -. 900, then C -. 0,0 but 
~r ~ and Zr 

-, 
~ and the

products ~P and CZ
~ 

remain finite. However, the behavior of the

0 infinite array does, not approximate the behavior of the finite array

for angles 8 too close to 900.

Note that

0

0 0 
Z
r A

R 
I Ac COSO 

(22)

is a pure resistance, and under the right conditions the presence of

the nonrigid interstices will make Z
R 
complex. We are mainly inter-

0 ested in the change in the power output, proportional to the radiation

I 
resistance, and thus proportional to the real part of C,

I i  2 2 2• U (R: + x )cos 8 + 1~AR cos9
Re (G) 2 2

I 

(8A + R
1
cos9) + (X

1
cosS) 

(23)

where R + ix = ZI I I 0

On the other hand, the source level in the far field is propor-1 tional to and thus it is proportional to (Cl2 ,

• (R2 + X2)cos2O
I 1G12 1 1

2 2
• (~A + R1

cos9) + (X
1

cosB ) - (24)

-
~~~~~~ 

0 ~ 

• 

i0 0 ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~

I _— 

-

~~~ 

- 

~~~~

-

~~~~
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~~~~~~~~~
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The difference

-

~ 2 8A R. cosB
Re (C) - I cJ 

L (25)

(AA + R1cos9)
2 + (X~cos8)

2

• is proportional to the power dissipated in the interstices; the differ-

0 ence vanishes when R
1 

= 0 because when the interstice impedance is

• - purely reactive then the interstices cannot absorb power.

Figure 2 shows cJ2 vs. Z
1
cosOThA for three different conditions:

1) R
1 

= 0; 2) R = x ;  3) X = 0. The source level is highest for

O R1 
= 0, lowest for X~ . = 0; i.e., for the same value of the interstice

impedance magnitude, a pure resistance produces a greater loss of source

level than a pure reactance because the interstice then not only modifies

the radiated pressure but also absorbs power. Note also that (Cl
2 is

independent of the sign of X1.

0 
IV. CONCLUSIONS

- 1 r We have derived the exact expressions for the pressure [Eq.(l5)J

and radiation impedance [Eq. (17)3 for an infinite array of rectangular

0 
0 0 { pistons with passive interstitial pistons interspersed among the radi-

ating pistons. For simplicity we assumed that the nonrigid interstices

j can be approximated by two equivalent pistons for each radiating piston; 0

however, we could have specified without much difficulty more intersti-

tial pistons for each radiating piston. With two interstitial pistons

we had to solve two simultaneous equations; with N iflterstitial pistons

O we would have to solve N simultaneous equations.

• Due to a lack of funds we have not evaluated the exact equations

I •

I - --
~~~

-- 2~~~~~~~~~~~~~~~~~~~~~~~~
0 
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-
~~~~~~~~~~~
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numerically. However, for small pistons close together we have been

able to obtain a very simple approximate expression [Eq.(2o)] for the

factor which modifies the pressure and radiation impedance because of

the presence of the nonrigid interstices. The approximate expression

shows that for angles near broadside the source level will be reduced

by less than 4 db if the interstices occupy less than 5O~ of the array

area and if the magnitude of the normalized dimensionless interstitial

impedance f Z1~ iè greater than l (see Figure 2). Consequently, one

should be able to design an array with interstices in such a way that

the detrimental effects of the interstices- are tolerable -- if the
O presence of pressure release materials and resonances in interstitial

cavities is avoided, then one should be able to make fZjgreater than I.

The reduction of the area occupied by interstices would also help.

APPEND IX A.

0 
DERIVATION OF THE EXACT EQUATIONS

-
O 

Since the piston velocities and the pressure field at the m!h row

I and the n~i! column will be the same as at m = 0 and n = 0, except for

the phase ‘( ~~~, we can confine our attention to the pistons at m = 0, n = 0.

0 
First consider the pressure field due to the radiating pistons alone,

i.e., assume the interstices are rigid. Then the pressure field can be

obtained from Eq.(14) in Reference 7; in Reference 7 the pistons are circu-

lar, therefore the integration in Eq.(l4) of Reference 7 is over the circu-

lar area of a piston; we must replace that by integration over the rectangu-

lax area of our piston, which then yields the dimensionless quantity as

given by Eq.(l6) in Section II here.

L -10-
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Next let us calculate the pressure pcv
H
c~~

t
P
H 
when the H-type

pistons vibrate with velocities v11 and the rest of the xy-plane is

0 rigid. is given by the same equation as 
~R

’ if we replace the

dimensions of the radiating pistons by the dimensions of the U-type

pistons, 4and if we compensate for a shift of origin from the R-type

to H-type pistons; the latter accounts for the phase E(H,R) in Eq.(l6).

- 1 I’~ is obtained the same way.

Thus, if we know the velocities v , v
U
) ~~ then the total pressure

is obtained from the superposition of the three partial pressures due to

each type of pistons:

iwt iwt .pcv
R
e 

~T 
pce (vRPR + ~

‘H~N 
•~~~~

(A-I)
0 

The superposition yields the correct expression because, for

0 
example, P11 gives the correct velocities for the H-type pistons, and

it adds nothing to the velocities of the R-type or V-type pistons,

since P
11 is a solution of the model where only H-type pistons vibrate,

and R-type and V-type pistons are immobile. Similar considerations
0 - 

- - apply to 
~R 

and P
~
.

However, this far we still have not found the relationship

0 between v and v , v • To obtain that relationship, we must consider 0

R H V
the forces on the H-type and V-type pistons, i.e., the boundary condi-

- tion on the interstices.

• 
I • To find the total force on an H-type piston, we must integrate

the total pressure, given by Eq.(A-I), over the area A .  Define

_ .L .ffdA P 
-

H AK AK
(A-2)

L 
-ii-

O

0
~~~~ 
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1 i.e., the dimensionless quantity S~~ is the integral of the partial

pressure due to all J-type pistons over the area of one K-type piston,
- divided by the area A

K
; the integration yields Eq.(7) in Section II.

S3~ is proportional to the force on one K-type piston due to the corn-

bined action of all 3-type pistons. Then the total force F~ on the

area A H is

P
H 0 

pcA~e
1’
~~ (vRS~~ + V~S}fl~ + vvSQ

(A-3)

However, if the internal impedance of ;the U-type piston is

PcA
R
Z
IP then the boundary condition on the interstice (force velocity

times impedance) becomes

F
R 

— - y e .  PcA
H
Z
I

(A-4)
where the minus sign arises from the fact that v11 is defined as the

0 velocity into the water, while the boundary condition contains the

O opposite velocity (into the equivalent piston). If we equate Eqs.(A-3)

H and (A-4), we obtain

v S  + V S  + V S  - v Z .RO RH R H U  V V H  HI1 (A-5)

Similarly, from the total force F on one V-type piston with

I interna l impedance pcA Z we find
V I

0 

VRSRV + VHSHV + v
VS

VV 
- 

~~ 
v
V
Z
I

(A-6)

If we solve simultaneously Eqs.(A-5) and (A-6) , then we obtain

I ~

•~ ~L: 
-12-
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Eqs.(5) and (6) in Section II. With v and specified, the total

pressuxe as given by Eq.(A-1) is now completely determined.

Moreover, from the total force F
R 
on one radiating piston we obtain

the radiation impedance PcA
R
Z
R~ 

because by definition

F
R PcA,,~ZR

.v
R
e~~

t,

(A-i)

and, furthermore, from the integral of the total pressure on the radi-

ating piston ,

F
R 

— pcAKe~~~
t (v

R
S

~~ 
+ V

H
S

~~ 
+ vvSQ,

(A-8) 
0

consequently, if we equate Eqs.(A-7) and (A-8), we obtain Eq.(17) for

the normalized dimensionless radiation impedance Z
R

• APPENDIX B

DERIVATION OF ThE APPROXIMATE EXPRESSIONS

If kdx 
- 0 and kd~ -. 0 (and then ks

~ 
-‘ 0, etc., because < d,~, etc.),

0 then from Eqs.(9) and (10) h(n) -. ~ and g(in) -. ~~~, except for n = 0 and m 0.

• Furthermore, T(n,m) -. ~~, except that

T-(O,0) = icos8
(B-i) 0

Consequently, for small pistons close together the dominant terms in Eqs.(7).

or (16) are the terms with m = 0, n = 0. For m 0, n — 0, and small pistons

- close together the directivity D(AJ
) ~ I in Eq.(8), and the E(J,K) 0.

Thus 
0

0

’ 

S A/A cos9.
3K 3 C (B 2)

• ~~.

I 
- —— — s---- --- — 

. 

0 : ~~~~~~~~~~~



_ 0 _ _  ~~ O 0 C ~~_ — 
~~~~~~~~~~~~~~~ ‘~~~~ 0~~_  Z~~~~~’~~~~ --— ~~~~~~~~~~ 

- 0~~~_

y v -A
- V — R (B-3)

v v A + A  + AZcos8
ft R H V C I  0

P
3 

-. (A
3

/A~cos9) exp (-ikxsin9cos~ - ikysin9sin~ 
- 

- ikzcoa8 )

0 
. 

(B-4)
0 0 1 If we substitute Eqs.(B-2), (B-3), and (B-4) into Eqs.(l5) and (17), -

then we obtain Eqs. (18) and (19).
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